PDS脱硫剂

气速与脱硫效率的关系

  我们都知道,气速的变化影响到脱硫效率,而通常认为气液接触时间越长,脱硫效率会越高,而事实上并非完全如此因为我们在实践中发现,有时候虽然脱硫塔出现堵塔现象,此时气速较前增大,而脱硫效率并没受影响。

根据双膜理论,吸收质必须以分子扩散的方式从气相主体先后通过气膜、液膜进入液相主体,尽管气、液两膜层都很薄,但两膜层仍为主要的传质阻力或扩散阻力所在。在碱液吸收H2S的过程中,传质阻力主要受气膜控制。根据流体力学原理,流速越大,则膜的厚度越薄。因此增大气体的流速,可以减少传质阻力,加快吸收的速度。这也说明了气速不宜太低,而且在一定的范围内,气速的加大是有利于吸收H2S的。

  如果气速过高,气、液两相界面通常处于不断更新的过程中,即已形成的界面不断破灭,而新的界面不断产生,界面的过快更新对吸收是不利的,从宏观上说,就是吸收时间过短,脱硫效率受影响。因此,气速的加大是有一定局限性的,要控制在一定的范围之内不仅要考虑接触处时间,还要考虑接触面积

 

溶液循环量与气体压降的关系

  溶液循环量的变化会间接或直接的影响到气体通过填料塔的压力降,具体分以下两个方面:

1)在脱硫的设计中,溶液的循环量(Q)是由单位时间内H2S的脱除量(G)和脱硫液的工作硫容(S)所确定但是,选择用填料塔进行吸收操作,还必须要用液气比,液体喷淋密度来校核该数据。也就是说,所确定的液体循环量,在不小于以上因素所求得的数据的基础上,同时还必须要满足液气比和液体喷淋密度的要求。循环量越大,喷淋密度越高,填料层越不容易积硫循环量越小,有时容易间接的导致压差的增大。很多企业,在运行中气量或气体中H2S的含量要低于设计值,所以溶液循环量控制较低就可满足脱硫效率但此时,脱硫塔的喷淋密度达不到要求,非常容易积硫,压差很快上涨。所以,生产中减负荷生产时,一般不宜减溶液循环量,可以调整溶液成份,降低生产成本。

2)虽然溶液循环量减小能间接导致气体压差的增大,但另一方面,溶液循环量的加大也会直接导致气体压差的上涨。因为,在气速不变的情况下,随着喷淋量的增加,填料层所持有的液量也增加,气流通道随液量增加而减小,使气流通过填料层的压降亦随之增加。有些企业,在填料塔堵塔现象较为严重时,阻力上涨,气体带液严重此时,减小溶液循环量,压差会立即下降,带液量也随即减少。不过,这种做法是非常不可取的,因为这样会使填料积硫越来越严重,使堵塔程度进一步加重。相反在堵塔时,我们要采取加大循环量的办法来处理,这时会短时间内压差增大,带液更为严重,但是,随着填料层积硫被慢慢清除,压差会逐渐下降。如果加大循环量导致带液过于严重而无法生产的话,也只能减量生产,同时再进行清塔降阻。

气速与脱硫效率以及溶液循环量与气体压降的关系